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Abstract

A model for the propagation of a finite concentration zone in a chroma-
tographic column is discussed for the case of a single component sample. This
model is based on the modern theory of nonlincar hyperbolic systems of partial
differential equations. It accounts for the nonlinear effects due 1) to the
thermodynamics of solute-stationary phase equilibrium (i.e., the nonlinearity of
the equilibrium isotherm), 2) to the interaction between radial mass transfer and
flow velocity (the sorption effect in gas chromatography), and 3) to the pressure
gradient along the column (in gas chromatography). Numerical results are
obtained by using the Godunov method. The column is divided into a large
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number of short segments. At each corresponding point a sequence of Riemann
problems (a concentration step at each time interval) is solved. The stability of
this procedure depends strongly on the ratio dz/dt of the elementary column
segment length to the time interval. The main advantage of this method over
previous ones is that it is not necessary to locate the concentration discontinuitics
for separate computation of their migration. The excellent results of a comparison
between the experimental profiles obtained for the elution of large concentration
zones of n-hexane on graphitized carbon black and the profiles calculated by this
method from the isotherm of n-hexane determined separately, illustrate the
validity of the method and its accuracy.

INTRODUCTION

The theory of the migration of zones in analytical chromatography
usually assumes that the concentration of the solute in the mobile phase
is negligibly small. This has several major consequences: the flow rate is
not perturbed by the presence of the solute, the kinetics of mass transfer is
independent of the solute concentration, elution is an isothermal process
and, most importantly, the constant of the physicochemical equilibrium
of the solute between the mobile and the stationary phases is inde-
pendent of the concentration of the solute in the mobile phase. Those are
the basic assumptions of linear chromatography. From there it is easy to
show that the band profile is Gaussian, provided 1) that the kinetics of
mass transfer between the two phases is rapid compared to the migration
of the zone, 2) that there is no significant amount of high energy sites on
the surface of the adsorbent or support, and 3) that the sample injection
band is pluglike or at least very narrow compared to the standard
deviation of the elution band (7). The validity of this conclusion in the
general case of analytical chromatography is well supported by experi-
mental results. A Gaussian curve is a good approximation for most band
profiles recorded in analytical chromatography, even though in almost
all cases the actual profile deviates somewhat from a Gaussian profile
due to the serious experimental difficulties encountered when trying to
satisfy exactly the three conditions just listed.

When the concentration of the solute increases, however, it is
commonly observed that the band profile changes progressively. The
peak broadens and becomes more and more unsymmetrical, the
retention time of the peak maximum varies, and the need for a more
sophisticated theoretical treatment of the band profile arises. The reason
of this phenomenon is related to the fact that the concentration of solute
in the mobile phase cannot be considered as negligibly small any more.
This has several major consequences, the relative importance of which
depends on the mode of chromatography used and on the experimental
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conditions, since the finite concentration of the solute can influence the
band profile through different pathways (2, 3). The most important ones
are the deviation of the equilibrium isotherm from a linear behavior, the
difference between the partial molar volumes of the solute in the mobile
and stationary phases, the variation of the viscosity of the mobile phase
with its composition, the heat absorbed or generated when the solute goes
from one phase to the other, and the change in the mass transfer kinetics
associated with the variation of concentration during the passage of the
zone.

The most important of these phenomena is that, when the sample size
is increased and the concentration of the solute in the migrating band
becomes large, the equilibrium constant of the solute between the
stationary phase and the mobile phase does not remain constant, and the
assumption of linear chromatography, i.e., of a linear isotherm, breaks
down.

The plot of the concentration of the solute in the stationary phase at
equilibrium versus its concentration in the mobile phase, ie., the
equilibrium isotherm, may have one of different shapes. In gas chroma-
tography the solubility of the solute in the liquid phase or the amount of
the compound under study adsorbed on the surface of the adsorbent
most often increases faster than the partial pressure of the solute in the
mobile phase and tends toward infinity when this partial pressure
approaches the vapor pressure at the column temperature (2). Then the
retention of the compound considered increases with increasing con-
centration: the retention time of most compounds which have a large
column capacity factor (k' > ~2-3) increases with increasing sample
size. Other isotherms are possible, of course, including a Langmuir-type
isotherm at low concentration followed by capillary condensation in the
pore of the adsorbent or support (2). Sometimes the solute-solvent
miscibility is not complete over some range of mixture composition.
Then two phases coexist in that range, and chromatography just does not
work in the corresponding conditions.

In liquid chromatography, on the other hand, a Langmuir isotherm, or
an isotherm having a similar shape, is very frequent (4). In such a case the
amount of solute in the stationary phase at equilibrium increases more
slowly than the concentration in the mobile phase, and the retention time
decreases steadily with increasing sample size. There are examples of the
opposite behavior, however. For a number of compounds the amount
sorbed on the surface of the stationary phase increases with increasing
concentration in the mobile solvent at very low concentrations, then
decreases at larger concentrations, and the isotherm experiences an
inflection point for some intermediate value of the concentration (5). The
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retention time of such a compound would increase with increasing
sample size at low values of the sample size, then go through a minimum
and decrease.

At the same time that the retention time varies, the band profile
becomes more and more unsymmetrical, the tail becoming steeper and
steeper if the retention time increases with increasing sample size; the
front becoming steeper and steeper in the opposite case. Large concentra-
tion band profiles become complex in the case of isotherms with an
inflection point.

Another source of nonlinear behavior of the chromatographic phe-
nomenon and of changes in the band profile is related to the difference in
the partial molar volumes of the solute in the mobile and the stationary
phases, which gives rise to the so-called sorption effect (6), of major
importance in gas chromatography, but often close to being insignificant
in liquid chromatography. Since in chromatography the flow rate of the
mobile phase (pure solvent) at the column inlet is kept constant, the
presence of the solute at finite concentration perturbs the flow rate of the
mobile phase (solvent + dissolved solute) inside the migrating band. In
gas chromatography this effect can become very large if the vapor
pressure of the solute is important, since the molar volume of a vapor is
several hundred times larger than that of the liquid. Then the flow
velocity of the gas phase is much larger inside the band than upstream or
downstream, and it increases with increasing solute concentration.

In gas chromatography the sorption effect tends to act in an opposite
way to the isotherm effect just described. It gives rise to peaks which have
a very sharp front and a quasi-Gaussian tail, as are often seen for
compounds with very small retention on open tubular columns (k' < 0.5-
1) (7). For compounds with intermediate retention (k' between ~0.5 and
1.5), it is even possible in certain cases to achieve an almost complete
compensation of one effect by the other (8). This can be done exactly by
adjusting the column average pressure, which determines the extent of
the sorption effect but does not influence the isotherm effect (7). In
liquid-solid chromatography the solute displaces the solvent from the
surface of the stationary phase, the solute molecules replacing the solvent
molecules, and the difference in volume occupied by the solute and by
the displaced solvent is very small, so this effect is rarely significant
).

Other effects are of lesser importance and are often neglected. The
variation of the viscosity of the mobile phase with its composition may
affect the flow velocity. As long as the composition of the mobile phase is
radially homogeneous, it causes but little change in the band profile. In
liquid chromatography, however, if the solution of solute becomes much
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more viscous than the solvent, hydrodynamic instabilities may arise,
resulting in “fingering flow” and a dramatic loss of performance. Because
of the compressibility of the mobile phase in gas chromatography, the
effect of viscosity could be more serious than in liquid chromatography.
But organic vapors, even those of compounds with large molecular
weights, usually have a small viscosity. If hydrogen or even nitrogen is
used as the carrier gas, the change in the viscosity of the gas with
composition is small and the effect on the band profile is very small and
most probably negligible (2).

Another effect of possible importance is the thermal effect. When a
solute is sorbed by the stationary phase, i.e., on the band front, some heat
is usually generated; this heat is absorbed when the solute returns to the
mobile phase, i.e., on the band tail. The band front is in a warm zone and
tends to move faster than the center of the band, while the band tail,
which is in a cold area, tends to move more slowly. The thermal effect
usually tends to broaden the band, at least in gas chromatography. In
liquid chromatography it would be conceivable to observe a reversed
thermal effect if the passage of the solute from the mobile phase to the
stationary phase is an endothermal process. Such a phenomenon has
never been reported. This effect should be more important in wide
preparative columns, which operate almost adiabatically, than in narrow
analytical ones, which operate isothermally. In practice, this effect is
neglected; there are no experimental data available to suggest that it is a
wrong assumption. It is worth noting, however, that the enthalpy of
adsorption in reversed phase liquid chromatography can be very
significant, especially for heavy molecular weight solutes such as
triglycerides and peptides, and this observation warrants a more thor-
ough investigation.

All these phenomena are known, and most of them have been
investigated in some detail. There is no general theory, however, which
takes all of the effects of finite concentration into account at the same
time. This is probably too difficult to do at present (9). A model is not yet
available for the prediction of the elution band profile in the case of a
large amount of a single compound when the equilibrium isotherm is
known. Further advances in preparative chromatography require the
development of such models taking into account, minimally, the effects
of the equilibrium isotherm and of the sorption phenomenon. The aim of
this paper is the presentation of such a model and a discussion of its
numerical solution in the simple case of the elution of a single
component band in gas chromatography.

The exact prediction of the band profile requires the solution of a
system of partial differential equations which are derived by writing the
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mass balance for the mobile phase and for the solute(s). This system of
equations is impossible to solve analytically in the general case and is
difficult to study (/0). An analytical solution is possible only in the case of
a linear isotherm, in which case a Gaussian profile is obtained.

A considerable simplification is brought to the problem if we assume
that the Kkinetics of radial mass transfer is infinitely fast while axial
diffusion is negligible, i.c., that the column efficiency is infinite. This
leads to the model of ideal, nonlinear chromatography. Its properties
have been discussed by several authors, notably Jacob (10-12), Rhee (13,
14), and Aris and Amundson (/5). Jacob used the method of character-
istics to derive a number of important qualitative results regarding the
change in the band profile during elution (16, /7). A program using this
approach has been written and used (/2). The method, however, is of
limited application and very complex. It is possible to show that in
certain conditions the system can propagate concentration discontinui-
ties. The program must locate these discontinuities exactly during each
loop, as the migration rates of the continuous part of the profile and of
the discontinuity do not follow the same equations. Because of the errors
introduced, almost half the band area is lost during the calculation,
which leaves some doubt regarding the validity of the results.

Rhee derived the solution of the Riemann problem (i.e., frontal
analysis response) in the case of a Langmuir isotherm (/4). In spite of the
generality of this type of isotherm in chromatographic systems, there are
a number of cases where the method is not applicable, most notably the
case of a rectangular injection. Aris and Amundson (/5) described in
great detail the method of characteristics for the solution of this type of
systems of partial differential equations, and gave a number of applica-
tions in chromatography.

We discuss here the theoretical background of a numerical solution of
the system of partial differential equations which describes the migration
of a single component band (/8). This work is based on recent
developments made in the study of nonlinear hyperbolic systems of
partial differential equations and especially on the work of Godunov (19).
Since we must write separately the mass balance of each compound in
the chemical system, the system of partial differential equations corre-
sponding to the separation of a mixture contains one equation for each
component of the mixture and one for the solvent. Then the present
approach is not directly applicable, but the very simple algorithm
obtained for the calculation of the profiles solution of the system of two
partial differential equations in the case of a single compound can most
probably be extended to the solution of a system of three partial
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differential equations, in the case of a two-component mixture, as
suggested by results obtained in another area by Kvaalen et al. (20).

On the other hand, this numerical solution has the advantage of
approaching the physical solution satisfactorily. The concentration
discontinuities appear, build up, and/or disappear in a natural way. It is
not necessary to carry out a special calculation to locate them. Further-
more, this solution gives the elution profile corresponding to any
injection profile. In this way it is more general than the solution of the
Riemann problem, since it can predict the profile of a zone of any finite
width and profile at injection. It must also be emphasized that the
method is applicable to any isotherm defined through an equation or a
table.

The flow velocity varies during the elution of a band, especially in gas
chromatography. The general algorithm can be adapted to take that effect
into account and to calculate the flow velocity profile which accompanies
the elution of a large concentration band.

Finally, the method is applied to the calculation of the elution profiles
of n-hexane on graphitized carbon black, a system which corresponds to
an isotherm with an inflection tangent (21). The results of the prediction
are compared to some experimental data.

I. THE CHROMATOGRAPHIC MODEL

We use the model described and discussed by Valentin which accounts
for the migration and transformation of the large concentration band of a
single, pure compound along a chromatographic column (2, 22). The
main assumptions of this model are the following:

(1) The column is supposed to be radially homogeneous, and so is the
input profile. Therefore the problem is monodimensional. The
only variables are the abscissa along the column and the time.

(2) Gases follow ideal gas laws for compressibility and mixing.

(3) Liquids are not compressible.

(4) Darcy’s law is valid in the range of flow velocity investigated. The
column permeability is constant, independent of the abscissa.

(5) The local pressure is constant during an experiment, i.e., depends
on the abscisa, not on the time, even during the passage of a large
concentration band.

(6) The carrier gas is not sorbed by the stationary phase (in gas
chromatography).
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(7) Temperature is constant during an experiment, independent of the
position or the time.

(8) Mass and heat energy exchanges between the mobile and the
stationary phases are infinitely fast. The two phases are constantly
at thermal and composition equilibrium.

(9) Axial diffusion proceeds at a negligible speed.

Combination of Assumptions 8 and 9 results in an infinite efficiency of
the column. In this model, band broadening results only from the
combination of the nonlinear effects taking place during the elution,
which are the phenomenon studied here, and of rounding errors arising
from the large number of numerical operations which have to be carried
out. As discussed later, these errors may be used to simulate the effect of
finite column efficiency.

The mass balance for a Compound A in the column may be written:

d d
E(Nﬁ‘*’ N3) = ‘E(uNﬁ}) (1)

where the subscripts S and M stand for stationary and mobile phase,
respectively; the variables are the time ¢t and the abscissa along the
column z; Nj;and N are the number of moles of Compound A per unit
length of column (concentration in a monodimensional model) in the
mobile phase and in the stationary phase at equilibrium, respectively;
and u is the local velocity of the mobile phase.

The unknowns are the local mobile phase velocity u and the values of
N}, and N2 for each Compound A. Ny, and N§ are not independent; they
are related by the equilibrium isotherm,

Equation (1) is valid for the solutes as well as for the mobile phase.

In the case where there are a number n of solutes in the original
sample, they compete for access to the stationary phase and the
composition of the sorbed material is given by a set of equations usually
referred to as “the mixed isotherm:”

Ni= k'(NY, N3y Nags . - . Ny o .., N3p) (2)

where i (between 1 and ») stands for the ith component of the mixture,
and k' is a function of the composition of the mobile phase.

For gas chromatography the carrier gas is not sorbed by the mobile
phase (Assumption 6), and the last equation, which expresses the
equilibrium of the mobile phase, is
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In liquid chromatography the mobile phase is sorbed by the stationary
phase, and an equation similar to Eq. (2) applies for the mobile phase.

Il. APPLICATION TO GAS CHROMATOGRAPHY

The mole fraction of each compound is related to the local pressure
and to the number of moles per unit column length by the following
equation (Assumption 2):

¢ = ApX (4)

where A is a proportionality coefficient which depends on the column
characteristics and its temperature, but which will otherwise be constant
and is the same for all compounds. Combination of Egs. (1), (2), and (4)
gives

d d :
E;(”PX:') + E [pX; + k'(pXi, pXs, ..., pX )] =0 (5)

There are n equations similar to Eq. (5), one for each compound in the
original sample. In addition, there is a similar equation for the carrier

gas:
w20+ 5 l0-2x)] 0 ©

It is more practical, however, to use instead of Eq. (6) the sum of all
Egs. (5) (i.e., for each of the n compounds) and of Eq. (6). This is the total
mass balance equation of the column:

L+ Ly ZRoX X px)[ =0 @)

In Eq. (7) the product up is proportional to the molar flow rate of the
mobile phase through the column.

The local pressure is derived from Darcy’s law, assuming that the local
velocity remains constant during the elution of a compound. Then the
pressure profile is given by the conventional equation (23)
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r@) = P = E -

where P is the inlet to outlet pressure ratio, in practice equal to the
absolute value of the inlet pressure, and L is the column length.

As a consequence of Assumption 5, that the partial differential of the
local pressure by respect to time is zero, we can rewrite the above
equations and obtain the final system of partial differential equations:

d ,
LX)+ (pX, + K (X, pXe, . pX)] = 0 (9)
(1) "
Ed-(F)+i{2k'(pX,,pX2,...,pX,,)} =0 (10)
z dr 5

The unknowns in Eqs. (9)-(10) are the total flow rate F and the flow
rates of each of the compounds, F.

IH. MATHEMATICAL PROPERTIES OF THE SYSTEM
OF EQUATIONS

The equations leading to the System I of partial differential equations
(Egs. 9 and 10) have been derived with the assumption that all functions
(i.e, the N/'s, X's, F;'s) can be differentiated as often as necessary. It can be
shown, however, that the concept of solution of such a system can be
extended to discontinuous functions (cf. Section VI, the Appendix, and
Ref. 24). Then System I of Egs. (9)-(10) also contains implicitly the usual
equations written for the propagation of discontinuities (/0, /1). This is
due to the conservative properties of this system of equations.

The system of partial differential Egs. (9)-(10) is a hyperbolic system of
nonlinear equations. It is not written in the classical way used by
mathematicians, however. The variables z and r have been exchanged. To
chemists this may seem of little importance, but this exchange creates
some uncomfortable, awkward, and sometimes difficuylt situations when
the classical theories of partial differential equations are applied to our
system (I5). The physical significance of the functions involved is
changed, often reversed. The designation of symbols is ambiguous: the
classical theory of nonlinear hyperbolic systems has been derived mostly
for the solution of hydrodynamic problems. The longitudinal gradient of
flux becomes a time gradient of accumulation (the increase of the
amount of solute contained in a column section). Worse, the velocity of
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the classical theory (dz/dt) becomes here the reverse of velocity (dt/dz). We
call it the retention ratio (in s/cm).

An important consequence of this nonclassical character of the
chromatographic system of partial differential equations is that the most
appropriate vectorial space for a discussion of the properties of the
solution of the system is a (n + 1) dimensional flow rate space {(where the
coordinates of the vectors are the flow rates of each component of the
studied mixture and the total flow rate) and not the corresponding
amount space (where the vector coordinates are the amount of each
chemical species involved) or concentration space. Physically, this means
that if the amount of each component is known at each location, there is
still one degree of indetermination, the mobile phase flow velocity. If the
flow rates of each component and the total flow rate are known, the
system is entirely determined, including the local composition (22).

iV. THE BOUNDARY CONDITIONS

We know the initial conditions of the system, i.e., the value of the
unknowns at the time origin, and the amounts injected, i.e., the vatue of
the unknowns at the column inlet. In other words, because the unknowns
are the flow rates, FX/(zf), we know all the FX(z,0) (usually 0, except for
the mobile phase) and the FX;(0) (usually 0 for the solutes and FT for the
carrier gas, except during injection).

These are not the conventional boundary conditions of a system of
partial differential equations (cf. Fig. 1). This is related to the fact that
only the upper right quadrant of the (z,f) plane has a physical meaning in
the case of the chromatographic problem. It is possible, however, to
transform the problem into a standard Cauchy problem, because all the
eigenvalues of the system are positive (cf. Section VI). Information transfer
in a chromatographic column flows exclusively toward increasing time.

V. THE SORPTION EFFECT

In gas chromatography it is not possible to consider the local gas
velocity as time-independent during the passage of a migrating zone. The
gas velocity depends on the composition of the gas phase, which itself
depends on the mass transfers between mobile and stationary phases.
First pointed out by Bosanquet and Morgan (25), this effect has been
thoroughly discussed by Golay (26), Peterson and Helfferich (27),
Haarhot and Van der Linde (28), and Jacob and Guiochon (3, /10).
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FI1G. 1. Boundary conditions of the chromatography problem (a) and the classical Cauchy

problem (b). For the chromatographic problem only t> 0 matters, and we know the

conditions at z = 0 (injection profile uy(r)) and at ¢ = 0 (the column is empty, F; = 0 except
for the mobile phase).

The mass flow rate of carrier gas sent to the column is kept constant by
the flow rate controller. The addition of solute vapor to the gas phase
increases the local velocity. The passage of this vapor to the stationary
phase is tantamount to its disappearance, from a volumetric point of
view, since the density of the liquid, whether pure, sorbed on the surface
of an adsorbent, or dissolved in the stationary solvent, is about 200 times
larger than the density of the vapor.

As a consequence, when dealing with gas chromatographic problems,
we may not simplify System I by assuming the flow rate to be constant
and by taking F off the differential operator. In liquid chromatography,
the solute displaces the solvent when it is sorbed. Neglecting the sorption
effect will have no significant effect on the accuracy of the predictions in
most cases unless there is a significant difference between the volume
occupied by the sorbed solute and the corresponding volume of displaced
solvent.

VI. NONLINEAR HYPERBOLIC SYSTEMS

Let w be the vector of coordinates (FX,, FX,, ..., FX, ..., FX)) in the n-
dimensional space. The system of equations becomes

dw  d - Aaw dw _

w(0,8) = Wy(t) (12)
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with
pX, + k'(pX,, pXy, ..., pX,, ..., PX,)

sz + kz(thpXZy- . ,pr, e 9an)
H(w) =| pX;+ ki(pX,,pXy, ..., pXi...,pX,) (13)
PX,, + kn(pX],sz,...,pX,‘,.. .,an)

Z kiu)Xl,sz, P ,pX,', N ,an)

i=1

D, H(w) stands for the matrice obtained by differentiation of the matrice
H(w) in respect to each of the coordinates of w.

A system of partial differential equations such as the one studied here
is called hyperbolic if the eigenvalues of the matrice D H(w) are real for
any vector w. If these eigenvalues are real and all different, the system is
called strictly hyperbolic.

For example, in the case of a single solute, the system of partial
differential equations becomes

d

dz

ry +%1pxk+(pﬁ)pn - 131 (14)

The eigenvalues of D H(w) are 0 and [l + (1 — X)k']/u, and the system
is strictly hyperbolic.

As a consequence of this property, it has been shown that the
information propagates at a finite velocity, i.e., in the case of the
chromatographic system at a finite value of the retention ratio (see
Section III). If the initial condition, i.e., F(0,), is zero for all values of time
outside a finite interval (which corresponds to the injection of a finite
sample plug), the same property is true for the function F(zz) for any
other value of z (see Fig. 2). A sample plug will propagate along the
column and elute within a finite time, leaving the column in the same
condition as it was before the injection. This property should be expected
from a satisfactory model of chromatography.
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F1G. 2. Propagation of a solution, i.e.. a band profile, along the column. The boundary

condition is zero except in a limited time interval at the column inlet (z = 0). The solution is

zero, except on a limited time interval at any position along the column. Hence, the

migration of the zone takes a finite time, at least within the framework of the ideal model.

Diffusion will smooth the profile and give it a quasi-Gaussian tail. The solution is zero in

all the hatched areas. The boundary condition in zero on the hatched part of the time
axis.

Except for the theory of characteristics (/0), directly derived from the
case of linear hyperbolic systems, the theory of nonlinear hyperbolic
systems of partial differential equations is in most part very recent and
still very incomplete (29, 30). There is no general result on the existence of
solutions nor, of course, any general result on the convergence of
algorithms permitting the calculation of approximate solutions. This is
related to the unfortunate property of these systems that they do not
necessarily have a regular solution, even for very regular initial functions.
Singularities may appear for any positive value of z, depending on the
initial function (boundary condition).

It is about as difficult to understand the physical significance of the
appearance of singularities in the solution of the system as it is to account
for this phenomenon (2). A more detailed discussion, leading to the
concept of weak solution and of mathematical entropy, can be found in
Ref. 24. Some explanations are also presented in the Appendix.

VIl. METHODS OF NUMERICAL SOLUTIONS

The methods based on the utilization of characteristics which are
usually simple and accurate become impractical as soon as a discontinu-
ity arises, which is the normal case in ideal nonlinear chromatography.
Thus, we shall apply methods using a finite differential approach.

The general principle of these methods consists of a discretization of
the plane z > 0, i.e., a space increment, 8z, and a time increment, &, are
chosen and a network of points with coordinates i8 and kdz is created
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(Fig. 3). A recurrence process permits the calculation of an approximate
value of the solution at the points on z = nbz from the points on the
previous line (z = (n ~ 1)8z). The solution will be assumed to be constant
on the time interval|i& — (i + 1)8¢]. Let u(n,i) be the value of the function
calculated for the step #8z and the interval |idz — (i + 1)8¢].

The calculation begins by the discretization (cf. Fig. 4) of the initial
condition uy; for example, by writing

1 i+ 1)1
Uy = 5- f ug()dt (15)

bt

There exist a number of different methods to write the iteration
process. The Lax-Friedrich relationship was the first to be suggested for
the numerical solution of nonlinear hyperbolic systems (29):

ntl _ Ui + Ui

l 2 — Siy) — flul )
Sz 28t

(16)

The advantage of this method is that it does favor one direction of
propagation, in agreement with our understanding of the physical
problem.

A. Condition of Stability

Consideration of the “propagation velocity” (i.e., the retention ratio)
gives a necessary condition for the stability of the calculation. As noted

NAZ|~————~~~~~~~- ui

AZ+

0 At iat

FiG. 3. Networking of the ¢z plane for the calculation of the solutions of the system of
partial differential equations.
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Fi1G. 4. Discretization of the boundary condition, i.e., the injection profile. The figure shows
how Eq. (15) is used to calculate Fy, i.e., to discretize the mass flow rate of Compound 7 at
the column inlet.
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above, a characteristic of nonlinear, hyperbolic systems of partial
differential equations is the existence of a finite retention ratio. If u,, the
initial function (injection band profile), is zero everywhere outside a
certain time interval |a-b [(which is, of course, the proper way to carry out
an injection in chromatography), the entropic solution (24) at the point of
abscissa z differs from zero only in the time interval |(a — Mz) —
(b + Mz)|, with M given by the relationship:

M= Sgg Max | A(u) | an

kE [1.n)

Furthermore, the numerical value of the retention ratio corresponding
to the single step process described above (cf. Eq. 16) is 6¢/8z. There will
be a loss of information if this numerical value of the retention ratio is
smaller thanthe actual retention ratio of the initial condition (cf. Fig. 5). The
calculated solution will be zeroinside the hatched area, whereasitshould be
different from zero. To avoid this difficulty, the following condition, called
the Courant-Friedrichs-Lewy condition (CFL), must be fulfilled (3/):

5 Sup  Inmw)]<1 (18)

Ot er kerian

For example, for the simplest case of a nonlinear hyperbolic equation
24):

du , d _
U Ly =0 (192)

(A1) | u(0,) = uy(?) (19b)

tSR,z>0 (19¢)
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the condition becomes:

2 Suplf ()] <1 (20)

8 YER

B. The Godunov Method

We shall make use here of the Godunov method (19) which derives
from the following observation: at the point ndz of the network (cf. Fig. 6
and Section VII), we have an approximate solution made of a number of
constant segments and separated by steps. We know how to derive an
approximate solution of the Riemann problem of the system of Egs. (11)-
(13), i.e., to solve this system for the following initial function:

Wy =u" t<90
(21)
Wy =ut >0

Thus we solve a series of local Riemann problems for the System I
(Egs. 9 and 10 or 11 to 13) at the points n8z and we combine these
solutions to obtain an approximate solution at point (» + 1)dz. At each
point {i8z, ndz} the Riemann problem is solved; let w}, , be the solution on
the vertical line AB (cf. Fig. 7). Because of the homogeneity of both Eq.
(11) and the initial condition, the solution of the Riemann problem is
constant on any straight line going through the point at which the initial
function is discontinuous.

>t

F16. 5. Condition of stability of the numerical method. The numerical solution is zero in
the two hatched area. However, the actual solution of the problem is not zero in the
vertically hatched areas.
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FI1G. 6. Godunov procedure for the calculation of a solution of the system of partial
differential equations by solving a series of Ricmann problems for every value of i. See
explanations in text.

(i-1at W At w¥ (i +1)at
F1G. 7. Derivation of the Courant-Friedrichs-Lewy condition.
Integration of Eq. (11) on (ABCD) gives
ﬂ iH(w) =0 (22)
or
witt = wi — QHW} 1) = H(W-10)] (23)

This, however, assumes that the value of w},,, is not perturbed by the
neighbor Riemann problems. The solution of the Riemann problem is
constant under the straight lines which have a slope A, for x <0 and A,
for x > 0. Accordingly, if 8z is small enough and the straight lines going
through the point {id,n8z} with slopes A(w/,,) and A,(wf) do not cut the
vertical segments EF and DC, respectively, the Eq. (23) is valid. This may
be written as follows:

Szh(wi ) < bt
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dzA,(w) < 6t (24)

These two conditions are verified if the CFL condition is satisfied.

C. Convergence of the Godunov Method

There are few general results available regarding the existence of a
solution and the convergence of the approach described here. In the case
of the simple Eq. (19), it has been shown that there is one single solution
and that the method converges toward it (19, 32, 33). Results regarding
more complex functions are still incomplete. Lax and Wendroff (34) have
shown that if a conservative algorithm converges, it tends toward a weak
solution of System (11) (25). Furthermore, if a discrete entropy relation-
ship is valid at each step of the calculation (34), the limit function is an
entropic solution of the system (25).

Finally, in the case of the Godunov method, the discrete entropy
condition (24) is always verified; if the method converges, it is toward an
(the?) entropic solution. This does not prove, however, either the existence
of that solution or the convergence of the series of solutions calculated by
this method.

The main drawback of methods like the present one is that they are of
the first order, i.e., that the error made at each passage from ndz to
(n + 1)8z is of the same order as 8z (35). Thus, these methods will tend to
dampen discontinuities. There are methods of the second order used for
the solution of linear, hyperbolic problems. Unfortunately, they give rise
to strong oscillations in the neighborhood of discontinuities. One
possible refinement to the numerical solution of the chromatographic
problem would be the use of a method which would be second order
almost everywhere, except close to discontinuities, where it would be first
order (32).

D. Antidiffuse Method

The general principle of this method is to start from a good first-order
method and to modify it in the regions where the solution is regular, i.e.,
far from discontinuities, to obtain a more accurate, second-order
method.

The first-order method will be Godunov’s method, as described in the
previous sections and in Eq. (24). The second-order method used was a
Lax-Wendroff method, using a two-term expansion of w{"*", assumed to
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be a regular function of wj. The quasi-second-order method is obtained
by testing for each value of i whether a concentration discontinuity is
near; for example, by checking whether the solution calculated at point n
tends to oscillate. If it does, the Lax-Wendroff method is used instead of
the Godunov one. It has been shown (32) that this type of method
converges toward the entropic solution in the case of the simplest
hyperbolic equation (Eq. 19). In this case, however, the condition of
stability is twice as stringent as the Courant-Friedrich-Lewy condition
written above for the Godunov method.

Since the antediffuse method did not give any improvement over the
simpler Godunov method, we do not give any detail on its application
here. They can be found elsewhere (I8).

Vill. THE CHROMATOGRAPHIC SYSTEM FOR THE ONE
COMPONENT SAMPLE

The system of partial differential equations describing the elution of a
large concentration band of a pure compound in gas chromatography is
given by Eq. (14). The local flow rate of mobile phase, F, is proportional
to the product pu. Accordingly, the differential matrice associated with
Hw) is

P wpxyy _ PX :
£ (L+HKPX) = (1 + k' (PX))

D.(H) = (25)
P, _PX
~F—k (PX) 7 k'(PX)
The cigenvalues of this matrice are:
AM=0 (26)
A, = 1 + (1 = Xk'(PX) 27)

u
The system is strictly hyperbolic, and the associated eigenvectors are
FX

1 + k'(PX)
(28)

w1= . w2=

F k'(PX)

The results of the study of the second vector field depend on the nature
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and shape of the isotherm. This study requires an estimate of the
expression D, A,w, (35), which is equal to

D \w,y = (P/FH)[1 + (1 = X)K'][P(1 — X)k" — 2k’] (29)

A detailed study of the Riemann problem requires the determination of
the roots of the term [P(1 — X)k' — 2k']. The design of the Godunov
method, however, can be simply made from the following observations.

A. The Riemann Problem
The situation is described in Fig. 8. The value of the solution is:
w™ in Area 1 of Fig. 8
w'in Area 2 of Fig. 8
w* in Area 4 of Fig. 8

In Area 3 there is a succession of simple two-waves, either discon-
tinuities or expansion waves, i.e., parts of solutions which are regular with
respect to the variable #/z (cf. Section III, above). w' is determined as
follows: w' is on the same first class integral curve as w, and it is possible
to go from w' to w' along one (or several, depending on the sign of
[P(1 = x)k" — 2k']) acceptable two-wave(s). This solution does exist if w~
and w* are close and if [P(1 — X)k” — 2k'] is not zero close to w™ or w'.

The critical point, however, is that in all cases this value w' is constant
on the vertical line k = 0 and satisfies the Rankine-Hugoniot relationship

z
4 2
i i w1 3
3
1
= < Vf\ 4
= ™
W N wt
wo 0 wt -t

F1G. 8. Solution of the Riemann problem and construction of the Godunov algorithm.
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[Hw') — H(w™)] = 0[w' — w] (30)

or
H(w') = H(w™) (€3)

The first class integral curves are characterized by X = Cte. Finally,
although we do not know w' exactly, we do know H(w"), which is the only
function through which w' is used in the Godunov method.

B. Condition of Stability

The CFL condition is especially simple to write, and also to fulfill, in
this case, since one of the eigenvalues is zero. It comes:

82 Sup My(w) < 1 (32)

8 wER?

or, after taking the largest possible values for each of the terms
involved,

Sz U min

5 - 2< 1+ k!, (33)
where u,,;, is the smallest possible flow velocity during the experiment,
i.e., the migration velocity of an unretained compound (column length
divided by the time hold-up and corrected for the decompression effect,
Ref. 23), and k;,,, is the maximum slope of the isotherm. This takes into
account the variation of the mobile phase velocity during the passage of
the band (cf. the sorption effect, Section V).

C. Boundary Conditions

We now transform the chromatographic system into one which has
standard boundary conditions.

Since the system of partial differential equations is hyperbolic, the
propagation of the bands takes place at finite retention ratio, i.e., there is
a finite value of time T such that the output of the column at time ¢ + T
does not depend on the initial state of the system at any time prior to 7 (cf.
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Section III). Thus, it is possible to study the behavior of the system by
assuming a constant initial condition.

The eigenvalues of the matrice D, H(w) being positive or zero, the
solution of the system with the standard boundary conditions (see Fig. 1)
is equal to the constant initial input for (# < 0, z > 0) and to the solution
of our experimental problem for (z > 0, z > 0). In practice it is useless to
calculate the values of «! fori < 0 (¢ <0, z > 0), since they are constant.

D. The Godunov Algorithm for Gas Chromatography

From what has been said before, the iteration equation for the
calculation of the solution at stage » is

Wit = wp = S JHOw) = HOwt ) (34)

In gas chromatography, however, the local pressure depends on the
abscissa, which we have neglected so far. To take it into account, we may
merely write in the above equation that p is equal to pn, a function of ndz
derived from Eq. (8). The final form of the iteration loop is thus

(FXO)* = FX7 = QU(P"X? + k(P'X7)) — (PX[, + k(P"X_)))]

(35)

(G) | (FO)*' = F} = QLk(P'X7) — k(P"X}-))] (36)
ne Jpr_ NOZ ;o

P _\/, T (P2-1) (37)

This set of equations, G, is the set of formulas used to write the basic
loop of our program.

IX. APPLICATION

Using the algorithms just discussed, we have written a program which
permits the derivation of a numerical solution of the system of partial
differential equations describing the migration of the zone of a pure
compound through a chromatographic column. The equilibrium iso-
therm of the compound considered must be known and made available
to the program under a suitable form to allow the calculation of the
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amount of solute sorbed as a function of the concentration in the mobile
phase. This program permits the prediction of the elution profile of the
zone corresponding to any input function.

In this paper we compare the predictions of the model with experi-
mental results obtained for the injection of narrow, rectangular plugs of
n-hexane on graphitized carbon black.

In a previous paper we described the determination of the adsorption
isotherm of n-hexane on graphitized carbon black at 100°C (5) using the
step and pulse method. The elution profiles of large sample size bands
were recorded with the same equipment.

From the isotherm obtained previously and using our program, we
calculated the band profiles of these large samples of n-hexane with the
following assumptions. The inlet carrier gas flow rate is kept constant
during the experiment, and the solute concentration in the mobile phase
entering the column is zero for ¢ negative. At time r =0 the input
concentration becomes equal to x, and remains constant until z = 1,
Then it becomes zero again and remains so until the end of the
calculation.

Calculations have been made with two programs, one using the
Godunov algorithm and the other one the antediffuse Lax-Wendroff/
Godunov algorithm. The latter did not give any significant improvement
in the band profiles over the results obtained with the Godunov method,
and because it is more complex and takes a much longer time to run, the
antediffuse algorithm was abandonned and is not discussed in detail
here.

In all cases the numerical retention ratio 6¢/6z was kept constant during
the whole calculation. The CFL condition was always satisfied, except for
one calculation.

X. RESULTS AND DISCUSSIONS

Figure 9 shows the profiles recorded following the injection of four
samples of increasing sizes (5.6, 87, 245, and 360 pg, respectively, Fig, 9a)
and the profiles resulting from the calculations performed on the same
sample amounts (Fig. 9b). All the profiles have been plotted on the same
scale. The concentration of n-hexane in the 800-uL (NTP) gas plugs
injected was 0.18, 2.8, 8.0, and 11.7%, respectively. Details on the
calibration of the detector which is required in these experiments are
given elsewhere (5). Figure 10 (a to d) permits a more precise comparison
between the experimental and the predicted profiles obtained in each
case. In Figs. 11(a) and 11(b) the calculated flow rate and concentration
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FIG. 9. Comparison between experimental and calculated band profiles. Ordinate: n-hexane

partial pressure in the eluent, arbitrary unit. (a): Experimental results. Column: 50 cm long,

2.1 mm i.d., packed with 1.5f g Carbopack C,HT (Supelco). Temperature: 100°C. Carrier gas

flow velocity: 17.7 cm/s. Inlet to outlet pressure ratio: 1.60. Sample: 500 uL of a nitrogen/n-

hexane vapor mixture. Sample size; 1, 5.6 pg; 2, 87 pg; 3, 245 ug; 4, 360 pg. Samples are

injected as vapor diluted in nitrogen. (b): Calculated profiles, corresponding to the same
sample sizes as the experimental profiles in Fig. 9(a).

profiles are shown for the first (5.6 ug) and the third (245 pg) samples,
respectively. Figures 12(a) and 12(b) illustate the progressive change in
profile during the migration of the 245-ug band inside the column. Since
each profile in these two figures is an instantaneous photograph of the
band profile inside the column, the profile asymmetry is opposite to the
one observed in Figs. 9 and 10, which represent elution profiles, at
column exit. The part of the profile the closest to the column exit is the
first one to get out. Figure 13 shows the influence of the pressure gradient
in gas chromatography. Finally, Fig. 14 shows what may happen when
the Courant-Friedrichs-Lewy condition is not satisfied.

The first observation is that the model accounts very well for the
experimental phenomena. The predicted and observed band profiles are
very close (see Figs. 9 and 10); the retention times (corresponding to the
elution of the concentration maxima), the appearance of a sharp bend on
the tail part of the profiles at high concentrations, the existence and the
time of appearance of the abrupt concentration variations are well
accounted for.

The second observation is that agreement between predicted and
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FiG. 10. Comparison between experimental and calculated band profiles. The dotted lines

are experimental profiles; the dots represent data points as acquired by the computer. The

solid lines represent the calculated profiles. (a): Sample size: 5.6 pg. (b): Sample size: 87 pg.
(c): Sample size: 245 pg. (d): Sample size: 360 pg.
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FIG. 11. Variation of the carrier gas velocity during the elution of a large concentration
band. Calculated flow velocity profiles and concentration profiles (arbitrary units). Sample
sizes: (a) 5.6 pg n-hexane vapor; (b) 245 pg n-hexane vapor. The initial flow velocity is 17.699
cm/s. The maximum velocity is 17.70 cm/s in the first case and 17.76 cm/s in the second
case. These variations (0.33 and 0.35%, respectively) are too small to be detectable in
practice.

experimental results improves with increasing concentration (see Figs.
10a to d), which is to be expected from a model which neglects the
second-order effects (mass transfer kinetics) and puts the emphasis on
the first-order eftects (thermodynamics, i.e., nonlinear behavior of the
equilibrium isotherm and sorption effect). Significantly, the major
difference between the predicted and the observed profiles lies in the fact
that calculated profiles are steeper than experimental ones, i.e., corre-
spond to a larger column efficiency. The peak recorded for a very small
sample size is significantly broader (1.8 times) than the peak calculated,
which corresponds to a 3.3 times less efficient column. The origin of the
sharpness of the simulated profiles is found in our original assumption
that the contribution of resistance to mass transfer to band broadening is
negligible. There is some smoothness, however, in these profiles which do
not show the sharp concentration discontinuities predicted by ideal,
nonlinear chromatography. The reason is to be found in the “numerical
diffusion,” the errors made in the millions of individual calculations
which result in a band profile. By adjusting the space increment, 5z,
properly (8¢ is selected to satisfy the CFL condition), it might be possible
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Fi1G. 12(a). Progressive change of the band profile during its elution through the column.

Calculated profiles at different times represent the concentration distribution of the solute

along the column. Sample size: 245 pg. The profile asymmetry of a space profile is the

reverse of the asymmetry of a time profile (i.e., an elution chromatogram as in Figs. 9 and

10), since the farther down the column a molecule is at a given time, the sooner afterwards it

exists. Time between 1 and 30 s after injection of the sample. The number on each curve is
the time in seconds.

FIG. 12(b). As in Fig. 11(a), but time between 10 and 100 s after injection of the sample.
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FiG. 13. Influence of the pressure profile of the carrier gas along the column on the elution

profile of a finite concentration band in gas chromatography. (a): Profile calculated with the

assumption of a constant pressure equal to the average column pressure (Py/j, where j is the

James and Martin pressure correction factor). (b): Profile calculated with the assumption of

a classical pressure profile given by Eq. (8) and unperturbed by the migration of the large
concentration band.

to fine tune the “numerical diffusion” and use it to replace the apparent
diffusion, better known in chromatography by its avatar, the column
HETP (37).

The final observation is the occurrence of a hump on the front side of
the peaks, especially important on the second profile but noticeable also
on the two largest ones. This hump is an artefact which originates in the
method we used for the derivation of the isotherm representation (5). We
have not used one of the conventional equations for this isotherm,
because they give the concentration in the mobile phase or the vapor
pressure at equilibrium as a function of the amount sorbed and they
cannot be solved analytically for the amount sorbed, which is necessary
for the program. We have preferred to interpolate the data by fitting them
on a cubic spline (i.e., a French curve). Although this function is known
to give excellent results within the range of the measurements carried out,
the spline introduces spurious oscillations outside this range, in its
immediate vicinity (cf. Ref. 5, Fig. 2), making the extrapolation of this
function ill-advised. To avoid the consequences of these oscillations, we
have assumed the isotherm to be linear at very small concentrations,
replacing the spline by a tangent in the range of partial pressures below
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FiG. 14. Example of a concentration profile obtained with an incorrect value of the ratio dz/
dt, not satisfying the Courant-Friedrichs-Lewy condition.

the smallest one experimentally accessible with accuracy. This creates a
discontinuity in the second derivative of the isotherm. The result is the
hump, which occurs at the same concentration as this discontinuity.

Also noteworthy is the way the tail parts of the experimental profiles
corresponding to the three large sample sizes (overloaded column) are
barely distinguishable from each other (see Fig. 9a). This fact demon-
strates the validity of the concept of an association between a concentra-
tion and a velocity (i.e., the retention ratio of the corresponding
characteristic line). It also verifies that the correct relationship has been
established between the peak profile and the shape of the isotherm: the
sharp bend in the tail part of the last two experimental profiles,
corresponding to the two largest samples, corresponds to the inflection
point of the isotherm, takes place at the same solute concentration, and
disappears when the band maximum falls below that concentration. All
these features of the experimental profiles (see Fig. 9a) can be found on
the calculated profiles 2 to 4 (Fig. 9b), as well as on the different profiles
of the band inside the column (Figs. 12a and 12b); they are merely
enhanced by the larger efficiency.

Figures 12(a) and 12(b) also illustrate the very rapid decrease, a near
collapse, of the band maximum at the beginning of its migration,
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associated with a rapid increase in the band width. This explains why the
massive column overloading, which almost always takes place at
injection, generally results in a modest band asymmetry: the nonlinear
region of the isotherm is sampled by the band for only a very short part of
its migration along the column. It will be noted again in these figures how
the sharp bend in the tail of the profiles forms early (it is obvious in Fig.
11a at the 2nd second) and remains stable. It is the diffusion-smoothed
discontinuity corresponding to the inflection point of the isotherm. This
in turn corresponds to a maximum in k’(C) at the largest retention ratio
that a concentration may experience in the column (8).

Figures 11(a) and 11(b) show the flow velocity profiles in two cases, a
quasi-analytical sample (5.6 yg) and a large one (245 pg). The variation of
the flow velocity during the elution of a band, even a large one (Fig. 11b),
is relatively small: for a concentration step at the column inlet of 8%
during 1.2 s (injection of a 800-uL. (NTP) gas sample in a 2.1-mm i.d.
column, with a flow rate of 36 mL/min), the maximum velocity change is
0.35%, which is probably too small to be measured, even with a precise
flow meter.

Finally, comparison between Figs. 13(a) and 13(b) shows that in gas
chromatography it is important to take the pressure gradient into
account. The band profile calculated on the assumption that the pressure
is constant and equal to the column average pressure results in a
predicted band profile which is markedly farther from the experimental
one than the profile calculated using Eq. (8) to account for the pressure
variation along the column, and this in spite of the fact that both
programs take the sorption effect into account in exactly the same way.

Figure 14 illustrates the importance of satisfying the CFL condition in
order to achieve acceptable results when operating the program. The
profile in this figure bears no resemblance to any chromatographic
profile. It does not even have a physical sense, since it incorporates
sections where the solute concentration is negative.

Xi. CONCLUSION

The numerical solution of the nonlinear, hyperbolic system of partial
differential equations which describes the migration of a large concen-
tration band along a chromatographic column has been proven to give
satisfactory results in spite of the necessity of neglecting the diffusion
term in order to obtain an equation system which can be programmed.
The band profiles calculated are in good agreement with those deter-
mined experimentally, except for the fact that the sides of the profiles
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predicted are quite a bit steeper than the sides of the profiles recorded
experimentally, at least in our case. This is due to the assumption of a
very large column efficiency (the model assumes an infinite efficiency,
but the program requires several millions calculations, resulting in
numerical smoothing). In the present program there is no way to account
for a variation in the column efficiency.

The use of the program written to apply this method of numerical
solution permits a detailed study of the various parameters involved in
the control of a band profile:

The nature of the isotherm. It is especially easy to change it since the
amount sorbed in the stationary phase (i.e. either dissolved or
adsorbed) is calculated using a subroutine of the main program. Any
isotherm given as an analytical expression, such as a Langmuir
isotherm, is easy to include. Difficulties may arise in the use of
experimental adsorption data, depending on the method used to fit
these data, but there are many numerical solutions to these problems.

The injection profile. Plug injection of large samples is a physical
impossibility. A rectangular injection profile would be ideal, but this
can never be achieved in practice. Discretization of a complex
injection profile is not difficult to achieve, however. These data are
injected in the calculation through another subroutine which makes
them easy to change.

The column parameters, describing its design (length, phase ratio) or
its operation (flow velocity, inlet pressure in GC). They are easy to
modify because they are entered as data in the program. The present
program does not permit any adjustment of column efficiency, which is
its most significant drawback.

Work is in progress to exploit the potentialities of this powerful tool to
study the performance of heavily loaded chromatographic columns in
more detail (37).

APPENDIX
Singularities in the Solution of the System
The nonlinear hyperbolic system of partial differential equations that
describes the behavior of a large concentration band in a chromato-

graphic column can propagate discontinuities, as in many other similar
systems (38). For example, the system describing the propagation of
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sounds in air can propagate shock waves. In the case of chromatography,
the origin and properties of these discontinuities have been recognized by
De Vault (39) and discussed by Jacob et al. (40) and by Rhee and
Amundson (41). They are related to the fact that a velocity can be
associated with a concentration. If the “velocity of the concentration”
increases with increasing solute concentration in the mobile phase, as is
the case with a Langmuir-type isotherm, the large concentrations (i.e., the
top of the peak profile) tend to pass the small concentrations (i.e., the
peak base). De Vault recognized that this is an impossible situation (39):
it is not possible to have three different values of the concentration at the
same point of the column. Instead, a stable vertical front appears and
grows. This is a concentration discontinuity. The theory of characteristics
explains the appearance, growth, decay, and collapse of these discon-
tinuities (40). It is much more difficult, however, to account for their
behavior quantitatively during the numerical solution of the problem
(42). We now present a few explanations on the mathematical back-
ground of the problem.

We shall discuss only the simplest case of a single nonlinear,
hyperbolic partial differential equation:

du , d _
d_z+ ?l?(f(u)) =0

(1a)
u(0,0) = ug(t), tE R, z>0

where the matrice D, H reduces to the scalar number f'(u), so the problem
is always strictly hyperbolic.

There is an important family of curves in the half-plane (zt, z > 0)
which is defined by

di/dz = f'[u(t(2),2)}
(2a)
t(0) = ¢,

These curves are called characteristic lines or characteristics of the
problem. It is easy to show that along these lines the following
relationship applies:

@) = 9+ & =0 (3a)
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and thus

u(t(z),2) = u(to) (4a)

and
dt/dz = f'(u(t,)) (5a)

The curves we are considering, defined by Egs. (2a), are straight lines. It
is often (and rather loosely) said that the initial condition propagates
along the characteristics (40). The solution can be derived numerically in
a very straightforward and easy way as long as the characteristic lines
issued from two different points of the boundary profile (“injection
profile”) do not intersect, and for all values of time before such an
intersection takes place. As soon as two characteristic lines intersect, a
regular solution to the system cannot exist any longer. For example, the
Burgers equation belongs to the family defined by Eq. (1a) with

f(u) =u’/2 (6a)

For this equation the characteristic line from the point (¢,0) is given
by

= uO(t())Z + t() (7a)

With uy(t) = t as a boundary condition, the characteristics are repre-
sented in Fig. 15 and the classical solution is

ultz) = (8a)
S
Sy t

1 2

FiG. 15. Characteristic lines of the Burgers equation.
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With u(f) = —t,, on the other hand, the characteristics from the points
(—1,,0) and (1,,0), respectively, intersect on the y axis (¢ = 0) and there
exists no positive value of z, z,, such that a classical solution is defined for
values of z smaller than z,.

Weak Solutions of a System of Partial Differential Equations

It becomes necessary to extend the concept of solution of a system of
partial differential equations and accept discontinuous solutions. This is
done by looking for solutions in the framework of the distribution theory.
A function u will be a weak solution of the system of partial differential
equations if

fmf [ == 4+ H(w) ]dtdz fj w®(0,0)dt = 0 (9a)

for any vectorial function @ of Class C.

Whenever u can be differentiated, we find the original system of
equations by part integration of Eq. (9a). On the other hand, let us
assume that u is a solution of Eq. (9a) and of Class C1 except on Curve C
of equation ¢ = s(z). For an open o of the plane (zf) containing an arc of
C, we define ®* and o~ as shown in Fig. 16 and C™ and C* as the part of
the border of ™ and ®* which are inside w. Let w™ and w* be the limits of
w along the curve, on each respective side. If ¢ is supported in ®, we
have

J. J [ —+H(w) d}dtdz—o (10a)

If we integrate by parts in @~ and ®”, respectively, since w is regular in
these two areas, and if we call v = (vz*,vt*) the external normal to w* (see
Fig. 16), we obtain:

fj [a,— + —H(w)] odtdz + §C+ fw v, + Hw ), }odv
+ §c+ fwrv + Hw*)viiodv =0 (11a)

Since this relationship must be valid for any function ¢ with support in
®, we must have
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Q-
t=s(z)
FIG. 16. Definition of the “weak solutions” of a nonlinear, hyperbolic partial differential
equation.
dw d
—+—Hw)=0 12a
4z T W) (12a)
in " and in ©* and
(w* — woWV + (Hw*) — Hw))vi = 0 (13a)

As the Curve C has been defined by r = 5(z), Eq. (13a) becomes
Hw*)—Hw) =s'@)w*=w) (14a)

and 5'(z) is the retention ratio of the discontinuity (or shock, by analogy to
aerodynamics). Equation (14a) is called the Rankine Hugoniot relation-
ship. It is a necessary and sufficient condition for a function satisfying
Eq. (1a), except on a discontinuity line such as C, to be a weak solution of
the system. It is interesting to observe that this relationship appears as a
natural consequence of the definition of the weak solution (Eq. 9a), while
its addition to the system of partial differential equations of chroma-
tography was quite arbitrary (40).

New difficulties arise, however, because now a nonlinear hyperbolic
partial differential equation may have an infinity of weak solutions,
which is not satisfactory. For example, the Burgers equation (Eq. 6a), with
an initial condition equal to 0 (u(0s) = 0), has an obvious classical
solution, the null function, u(z¢) = 0. The following solution, however, is
defined for any ¢, and for a > 0:
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—® <t<to—-%z, u(z,t) =0

ty — %z <t <t u(z,t) = —a
(15a)

t0<t<t0+%z, u(z,t) =a

t0+%z<t< +o,  u(zf)=0

is an acceptable weak solution. Since it is a classical solution everywhere,
it is continuous, while the Rankine Hugoniot relationship is verified
along the discontinuities.

The concept of mathematical entropy is introduced to solve this
difficulty (44).

Mathematical Entropy

We introduce a constraint to limit the number of possible solutions of
the system. A function ¢ is called the mathematical entropy of the system
of partial differential equations if there exists a function y such that

v'=¢'DH (16a)

v is called the entropy flux. In fact, due to the exchange between time
and space which occurs in the chromatographic system of equations,
compared to the classical hyperbolic system, vy is the time gradient of
entropy accumulation.

If a regular solution of the system does exist, then by multiplying it on
the left side of ¢'(w), we obtain:

do(w) | dy(w) _
ot =0 (17a)

This is not true, however, if w is not regular. We can then select the
entropic solution of the system by requiring that

do(w) | dy(w)
L S <0 (18a)

for any convex entropy of the system (44).
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Another definition of the entropic solution is to consider that it is the
limit of the solution of systems which include a vanishingly small
diffusion term, i.e., it is the limit of the solution of

dw _ d2

when ¢ tends toward 0. Equation (19a) has a single, regular solution. The
diffusion term has a smoothing, regularizing effect. Furthermore, if ¢ is a
convex entropy of the system, we have, for any positive value of ¢,

do(we) | dy(we)
s i <0 (20a)

The limit solution, if it exists, should satisfy Condition (18a). The
definition and the procedure make sense since the diffusion term does
exist in the original model of chromatography, where it accounts for the
resistance to mass transfer and the axial molecular diffusion, but it has
been dropped for the sake of simplification and because it is small
compared to the other terms.

A detailed study of the diffusional term has been published by Rhee et
al. as part of their investigation of the solution of the Riemann problem
(41). Finally, another method for the selection of the proper solution, due
to Lax (45), consists in the interdiction of certain types of discontinuity.
This was the first method used. It is rather practical and it is the one
selected for this work.

The Lax Condition

A shock is “acceptable” if there are no characteristics exiting from it.
More precisely, a discontinuity is called a k-shock if the characteristic
lines of the kth family enter in the discontinuity while the characteristic
lines of the other families do not encounter it. Here are the consequences.

Let w be a weak solution of the equation system, continuous every-
where except along a shock curve C (¢ = s(z)). It is a k-shock curve if the
following two relationships are verified along the curve:

MlwT) > 8'(2) > A(w) (21a)
and

Meoi(w™) <8'(z) < My (W) (22a)
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Once the eigenvalues of the system are arranged in increasing order,
M(w(z,0)) is the retention ratio of the kth characteristics going through the
point (z#), and s'(z) is the retention ratio of the shock at the point
(z.5(2)).

There are other ways to select the acceptable shocks (46, 47), but the
general theory is still quite incomplete. It is possible to demonstrate that
these different conditions are equivalent only in particular cases. The
following results summarize the present state of development of the
theory of nonlinear hyperbolic partial differential equations applicable
to the chromatographic model.

In the case of a single equation, all the entropic criteria have been
shown to be equivalent. An entropic solution does exist and is unique for
all finite boundary condition, u, (48, 49). This case is of no importance to
us, however. It describes the propagation of the front of a pure gas or
vapor which is suddenly introduced into an empty column where it is
sorbed. There should be no carrier, so this model cannot describe any
chromatographic problem.

In the case of a two-equation problem, Di Perna has shown the
existence of a solution for some specific systems and for a finite bound-
ary condition (50). A system of two partial differential equations
describes the behavior of a single solute in chromatography. It permits
the prediction of the band profiles in nonlinear chromatography (largely
overloaded columns) and in frontal analysis or of the migration rate of
system peaks, but always for a pure compound and a pure mobile
phase.

In the case of three-equation or larger systems there is a demonstration
of the existence of an entropic solution, after Lax, for a finite and nearly
constant boundary condition. It is based on a discretization of the
condition and a study of the interactions between discontinuities (57).
Three-equation systems permit the study of the separation between two
compounds in chromatography, provided the ternary sorption isotherm
is known, the study of frontal analysis with a mixed mobile phase and the
study of other chromatographic problems of similar complexity. It seems
that they are the most important in practice. Although chromatography is
often used to separate more complex mixtures, the prediction of the band
profiles during the separation of a binary mixture would permit detailed
studies on the optimization of the experimental conditions for maximum
yield, maximum production, or minimum cost which would lead to
general conclusions valid to the case of the separation of more complex
mixtures.

In spite of the difficulty of the problem and the uncertain nature of the
theoretical ground where we have to venture, it seems that such a result is
not beyond our reach.
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